METHODS AND MODELS OF HIERARCHIZATION OF THE TOURIST ATTRACTIONS. STUDY CASE: NEAMȚ COUNTY

Alexandra CEHAN*
„Alexandru Ioan Cuza” University of Iași, Faculty of Geography and Geology, Romania
e-mail: cehan.alexandra@yahoo.com

Daniel TUDORA
„Alexandru Ioan Cuza” University of Iași, Faculty of Geography and Geology, Romania
e-mail: tudoradaniel@yahoo.com

Abstract: The aim of the present study is to emphasise the utility of hierarchization in the field of tourism, utility proved through the creation of a tourist attractiveness index based on both quantitative and qualitative features. This index, besides determining the hierarchical position of each tourist attraction, proves useful for pointing out the most important tourist areas of Neamt County, these results being obtained through data collection and analysis and through the creation of primary indices. The outcome of this study is, therefore, a generally applicable instrument for any tourist hierarchization approaches, whose efficiency is discussed in the end by comparing the values obtained for each territorial unit of the county through the use of this instrument with the values assigned to the same units by the Spatial Planning of National Territory. In this way are highlighted the advantages this method of hierarchization brings to the process of evaluation of tourism potential, as well as its faults.

Keywords: hierarchization, tourist attractiveness, tourist attractions concentration, multivariate analysis

* * * * *

INTRODUCTION

In tourism, determining the hierarchical position of a tourist attraction may prove to have multiple benefits, from helping tourists decide upon their holiday destination to indicating the areas that could benefit the most from investments, and, therefore, that would advantage the investors too. But in order to obtain these results, the base on which the hierarchization is created should be complex and should consist of as many criteria as possible, capable to differentiate the tourist attractions taken into consideration. Being given the fact that a main feature of these tourist attractions is their potential of generating tourist flows, determining what elements create this potential, and, therefore, what are the most important aspects that characterize an attraction is essential in the process of hierarchization.

The notion elaborated by Bergman, according to which the tourism potential is „a reflection of the functional-complementary way in which the three ’A’ combine: attractiveness, accessibility and accommodation” (Ciangă & Deszi, 2007, p. 70) can be found in the romanian

*Corresponding Author

http://istgeorelint.uroadea.ro/Reviste/Anale/anale.htm
literature as well, where many scholars see tourism potential as a sum of tourism resources, offered by both natural environment and by man’s actions upon it (Glăvan, 2006; Swizewski, 1977), actions that can relate to all of the three ’A’. These theoretical ideas are transposed into practice by the Spatial Planning of National Territory (2009) in the attempt of creating a method of tourism potential evaluation by referring to the tourism resources and to the tourism and general infrastructure and, at the same time, the ideas exposed above are the root of the tourist attractiveness index that represents the final result of this study.

A notion of interest for the study, which is tangential with that of „tourism potential”, is the notion of „tourist attractiveness”, Laplante M. defining it as the sum of the intrinsic attractiveness and added attractiveness (Moreau, 2001), the first type including the elements that characterize the tourist attractions since their appearance and that, we could say, are effectively a part of them, while the second type refers to the amount of attractiveness that the man adds to the destination with the purpose of its valorisation, consisting mainly of the tourist infrastructure.

The choice of Neamt County as study area is motivated by its complexity concerning the tourist offer, which corresponds to the necessity for a large variety of tourist attraction types in order to obtain a relevant hierarchy. Therefore, considering the concept of „hierarchization” as indicating the subordination of different elements based on various criteria, it results that in tourism, in order to determine a ranking of the tourist attractions it is necessary to relate to a wide variety of variables that can apply to all of the attractions taken into consideration, no matter how different their nature is. An aspect of great importance that was to be tackled with in the attempt of creating hierarchies in the field of tourism is the non-quantifiable character of most of the features that characterize the tourist attractions.

MATERIALS AND METHODS OF STUDY

One of the main conditions imposed in order to ensure this study success is a high enough number of tourist attractions from different categories that can illustrate the situation of the tourism supply in the county in as close of the reality a manner as possible. The base of the present study consists of 224 tourist attractions selected on the criterion of their importance for tourism from more elaborate lists created by the National Institute of Patrimony or presented in the Spatial Planning of National Territory.

![Figure 1. The methodology of the study](image-url)
The selection of these 224 attractions represents the starting point of the creation of a complex database, with multiple quantitative variables collected directly from the National Institute of Statistics and from the National Institute of Patrimony or determined on base of the qualitative information provided by the last Institute mentioned. In order to ensure the possibility of mapping the attractions selected it was necessary the creation of a geodatabase, in ArcMap 10, by using the Editor Toolbar and by consulting Google Earth for the precise location.

An essential role in illustrating the results of the hierarchization is assigned to the cartographic method, ArcGis for Desktop being used both for graphically representing the primary data collected and for generating more complex criteria of hierarchization, with the use of Network Analyst, which made possible the calculation of distances between the tourist attractions, as well as the calculation of the interaction potential between the tourist offer and the tourists.

The creation of primary indices and of the final tourist attractiveness index relies on quantitative methods, that make possible the correlation between different variables in order to accentuate the degree of differentiation between the tourist attractions and, respectively, their suitability of being compared. The correlation of the variables was made possible only after the standardization of their values, being given the fact that the different units of measure of the variables could not allow, at first, a real estimation of the connections and differences that appear between them.

The correlation of the variables analysed is realised through Statistical Package for the Social Studies software which provides the means for applying a multivariate analysis method, the factor analysis. Through this have been generated different formulas that create factors which work as indices, each index pointing out different manners and levels of correlation between the variables, and representing a viable method of hierarchization itself.

Being given the complexity of the subject to be analysed, “an important role in the methodology of assessing the developement of tourism potential is to establish the factors which have to be taken into account and the scheme with scores for different factors” (Boengiu, 2012), scheme that in the present study depends entirely on the method that had been chosen.

CRITERIA OF HIERARCHIZATION

The data collected and the methods used in order to process this data allowed the elaboration of a list of 8 main criteria (Table 1) on base of which can be created hierarchies that emphasise the level of attractiveness of the tourist attractions from different points of view.

Due to the different nature of the aspects that are considered as part of the tourist attractiveness, there were established four main categories of criteria: intrinsic attractiveness, favorability of visiting the destination, accommodation and facilities related to the attraction and tourism demand.

The qualitative character of the intrinsic attractiveness imposes limits to the developement of a process based mainly on mathematical methods, as is the case with the hierarchization, limits determined also by the difficulty of thoroughly analysing all of the 224 tourist attractions in order to discover the features that characterize each of them.

Therefore, the index of quality is the main variable that regards the intrinsic attractiveness of the tourist attractions, this index taking into consideration the quality value of the attraction, determined on base of the scores that have been assigned for the category to which each tourist attraction belongs. The fact that the category is seen as an indicator of the tourist attractiveness is due to the perception of these categories as levels of appreciation of the importance and of the extent to which the tourist attractions act as unique destinations in the territory.

The five categories established by the International Union for Conservation of Nature (I, II, III, IV, V), for the natural tourist attractions and the two categories used to differentiate the anthropogenic ones (A and B) assigned by the National Institute of Patrimony received values according to their importance and in order to create a generally aplicable system of hierarchization.
Methods and Models of Hierarchization of the Tourist Attractions

17

for both natural and anthropogenic tourist attractions. Therefore, to the categories I, II, III, IV and V correspond the values 5, 4, 3, 2 and 1, while for A has been assigned value 4 and for B value 2.

The quality of a tourist attraction was established in this case by referring not only to its own value ($\sum \text{val.cat.}_0$), but also to the values of the categories of all the tourist attractions located within a distance of 10 kilometers from each tourist attraction ($\sum \text{val.cat.}_n$). This index highlights, through its high values, the tourist attractions that benefit not only from their own intrinsic attractiveness, but also from the proximity to a larger or smaller number of tourist attractions, the connection with some valuable destinations determining to some extent an “attractiveness contamination”.

An index that talks both about the intrinsic attractiveness and the favorability of visiting a destination is the Index of Diversity, which takes into consideration the number of tourist profiles within the same distance of 10 kilometers in order to determine to what degree a tourist attraction may motivate a tourist to visit it, depending on the tourist complexity of the area that surrounds it. A more pronounced differentiation is provided by using the logarithmic value (val.attr.) of the age of the anthropogenic attractions and of the surface of the natural ones, beside the values for the number of tourist profiles (Val.div.) and the number of tourist attractions (n).

In the cases of both indices, of Quality and Diversity, is emphasised the tourist complexity of the urban areas (Piatra Neamt, Targu Neamt), but also of the Natural or National Parks, which represent, by definition, a cumulation of various natural attractions, gathered together under the generic name of “Parks” with the purpose of their protection and conservation.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Formula/Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Quality Index</td>
<td>$\text{Ind. qual.} = (\sum \text{val.cat.}_n) \cdot \ln(\text{val.cat.}_0)$</td>
</tr>
<tr>
<td>The Diversity Index</td>
<td>$\text{Ind. div.} = \frac{(n + \text{Val.div.})}{n + \ln(n)} \cdot \ln(\text{val. attr.})$</td>
</tr>
<tr>
<td>Average distance between tourist attractions</td>
<td>The average of the distances between a tourist attraction and the other 5 closest to it</td>
</tr>
<tr>
<td>The tourist attractions concentration in territory</td>
<td>The number of tourist attractions within a 10 km distance from each tourist attraction</td>
</tr>
<tr>
<td>The interaction potential with the cities from Moldova</td>
<td>$\text{Pop. inter.} = \sum \frac{\text{Pop.}}{(\text{Dist. tr.attr.0-0})^2}$</td>
</tr>
<tr>
<td>The position in altitude</td>
<td>Altitude (meters)</td>
</tr>
<tr>
<td>The possible mass of accommodation</td>
<td>$\text{Ind. acc.} = \sum \frac{\text{No.beds L0}}{(\text{Dist. tr.attr.0-L0})^2}$</td>
</tr>
<tr>
<td>The probable mass of tourists</td>
<td>$\text{Ind. arrivals} = \sum \frac{\text{No.arrivals L0}}{(\text{Dist. tr.attr.0-L0})^2}$</td>
</tr>
</tbody>
</table>

The average of the distances between a tourist attraction and the other five closest to it emphasises the role the tourist attractions density in the territory plays in intensifying the attractiveness of a tourist attraction or of a defined area, the smaller the distance between two tourist attractions, the higher the interest of the tourist for visiting both of them. The most advantaged in this case are some of the monastic ensembles which are composed of more elements of tourist interest, elements that are situated, naturally, within a very short distance from one another. These ensembles obtain, however, low positions in the hierarchy based on the tourist diversity, fact that highlights the necessity of taking into consideration a complementarity between distance and the variety of the tourist profiles in any attempt of hierarchization that is related to tourist attractiveness. Besides the proximity between the tourist attractions, the tourist attractions concentration in territory is another index that utilizes the distance as an expression of the favorability of visiting a destination. The distance of 10 km from each tourist attraction is used to
determine the tourist attractions density, the number of 33 tourist attractions being specific to some of the tourist attractions characterized by a central position in Piatra Neamt.

The last index that refers to the distance is the potential of interaction, which differentiates the tourist attractions by calculating their chance of being situated in the reaching area of the potential tourists from the cities of the region of Moldova, cities seen as the main emitters of tourist flows for the destinations from Neamt County. Taking into consideration the distance between each tourist attraction and each city \((\text{Dist}_{\text{tr.attr.0-O.0}})^2\) and also the population from each city \((\text{Pop}_{0.0})\), the potential of interaction advantages the points that have a central position in the region of Moldova, the values of the potential decreasing from east to west.

The altitude at which are positioned the tourist attractions was considered another criterion of hierarchization, although it can be seen as playing a double role in tourism: the role of amplifier of tourist attractiveness, through the landscapes and the natural environment it provides, but also a restrictive role when referring to it as an obstacle in front of the accessibility of a place. It is emphasised, therefore, the dichotomy of the county concerning the altitude, the western part being characterized by considerably higher elevations than the eastern one.

The last two indices have similar formulas and refer to the two main components of the tourism phenomenon: the supply and the demand, with the supply consisting, in this case, only of the accommodation base. Therefore, first, we talk about the possible mass of accommodation by considering the number of beds that exists in each village or city and the distance between them and each tourist attraction, integrated in the formula by taking into consideration a round trip, which implies the doubling of the distance travelled. The same formula is applied for the probable mass of tourists, with the exception that the number of beds is replaced with the number of arrivals registered in each village or city. This index was considered of interest due to the fact that the intensity of the tourist circulation represents a numeric expression of the tourist attractiveness, the number of tourists providing relevant information about the level of valorisation of the tourist attractions.

The 8 criteria of hierarchization exposed above represent attributes of the tourist attractions that are appropriate for differentiating them from one another, but in order to effectively create a hierarchy that could work as an indicator of the total attractiveness of a destination it is required to bring all the variables together and determine their degree of importance and relevance for the final score of attractiveness. The factor analysis was chosen as the method through which the 8 variables can be combined in the creation of factors, that represent, in fact, the expression of the level at which each variable participate in considering a certain place or destination as being attractive for the tourists.

RESULTS AND DISCUSSIONS

The results of the factor analysis, generated by Statistical Package for Social Studies, determine, through the creation of a series of factors, a new classification of the variables utilized. Therefore, there are two main categories of variables, categories individualised on base of the conception of Laplante M. about the tourist attractiveness: the intrinsic attractiveness and the added attractiveness. Being given the fact that the distance can be seen as an attribute of the tourist attraction (Nicolau & Mas, 2005), and therefore, as a specific feature that does not change in time, the category of intrinsic attractiveness includes, in relation with the results of the factor analysis, 4 of the variables analysed: the quality index, the diversity index, the average distance between tourist attractions and the tourist attractions concentration in territory. The added attractiveness, on the other hand, refers, in this case, to the possible mass of accommodation and to the probable mass of tourists, the last one, although not a feature itself of a tourist attraction, being a numeric expression that can add value to it by reflecting the capacity of the respective destination to attract visitors and, implicitly, its importance in the eyes of the tourists.
Table 2. Total Variance Explained
(Source: SPSS)

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalue</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total % of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>3.602</td>
<td>45.024</td>
</tr>
<tr>
<td>2</td>
<td>1.724</td>
<td>21.545</td>
</tr>
<tr>
<td>3</td>
<td>1.269</td>
<td>15.857</td>
</tr>
<tr>
<td>4</td>
<td>.618</td>
<td>7.724</td>
</tr>
<tr>
<td>5</td>
<td>.428</td>
<td>5.347</td>
</tr>
<tr>
<td>6</td>
<td>.260</td>
<td>3.252</td>
</tr>
<tr>
<td>7</td>
<td>.089</td>
<td>1.108</td>
</tr>
<tr>
<td>8</td>
<td>.011</td>
<td>.143</td>
</tr>
</tbody>
</table>

The choice of the 8 variables relied on their quantitative character or at least on their susceptibility of being quantified, due to the mathematical base of the factor analysis that requires the same unit measure for all the variables to be analysed. It is necessary to mention, in order to facilitate the interpretation of the results that the Hull score was used for the determination of the values of the indicators in order to avoid the negative values that would have caused a misinterpretation of the final model. The Hull score works according to the formula \(n \times 14 + 50 \), where \(n \) is the value for each variable. The results of the factor analysis reveal that not all of the variables are correlated and that there are established different relations between different groups of variables.

Table 3. Structure Matrix
(Source: SPSS)

<table>
<thead>
<tr>
<th></th>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Diversity Index</td>
<td>.883</td>
<td>.238</td>
<td>.153</td>
<td></td>
</tr>
<tr>
<td>*No. of attractions/10 km</td>
<td>.876</td>
<td>.614</td>
<td>-.081</td>
<td></td>
</tr>
<tr>
<td>*Mass of accommodation</td>
<td>.294</td>
<td>.992</td>
<td>-.129</td>
<td></td>
</tr>
<tr>
<td>*Mass of tourists</td>
<td>.317</td>
<td>.994</td>
<td>-.125</td>
<td></td>
</tr>
<tr>
<td>*Interaction Potential</td>
<td>-.172</td>
<td>.033</td>
<td>-.845</td>
<td></td>
</tr>
<tr>
<td>*Average of distances</td>
<td>.779</td>
<td>.129</td>
<td>.031</td>
<td></td>
</tr>
<tr>
<td>*Altitude</td>
<td>-.110</td>
<td>-.178</td>
<td>.857</td>
<td></td>
</tr>
<tr>
<td>*Quality Index</td>
<td>.897</td>
<td>.343</td>
<td>-.053</td>
<td></td>
</tr>
</tbody>
</table>

The table of the total variance explained (Table 2) illustrates the fact that there can be defined 3 factors that together explain approximately 82% of the model created. More exactly, the first factor, for example, contributes to the tourist attractiveness in a percentage of 45, while the second factor explains 21% and the third almost 16% of the model created for evaluating the tourist attractiveness of a tourist attraction or area.

Table 3 has an essential role in explaining with more details the way in which the 3 factors are created. The high values in the table indicate the variables that are associated to one another, each of them explaining in some degree the high values of the variables with which they are correlated.

Factor 1 owns its high percentage in explaining the variance of the model created to the considerable high values of four variables that result in this factor analysis as being connected to one another: the Diversity Index, the number of tourist attractions in a 10 km distance from each tourist attraction, the average of the distances between each tourist attraction and the other 5 closest to it and the Quality Index. The character of these variables and the fact that all of them are
expressions, to different degrees, of the inner features of the tourist attractions make possible the bringing together of them under the name of Intrinsic Attractiveness Index, which is one of the hierarchization methods created in this paper.

By mapping the first index resulted (figure 2), there are highlighted the main areas with significant tourist resources, Piatra Neamț and Vanatori-Neamț, followed by Agapia, Ceahlău or Roman being emphasised as encompassing in their territory both the highest number of tourist attractions and the tourist attractions with the highest values of the Intrinsic Attractiveness. Therefore, the communes mentioned above are well represented concerning their tourist profile both from the quantitative and qualitative point of view. However, it is noticeable that some of the tourist attractions that have high intrinsic attractiveness fail to determine a high value for the commune where they are situated too, the low number of the tourist attractions appearing as a disadvantage for some of the communes where even though some iconic tourist attractions are located, the attractiveness of the commune is not supported from a quantitative point of view. This is the case, for example, with Tarcau, a commune with a score of only 50, represented by seven tourist attractions, among which one, Sihastria Tarcaului, has a position in the middle of the hierarchy according to its intrinsic attractiveness, with a value of 43.

Figure 2. Intrinsic Attractiveness Index

The second index created is the expression of the correlation between the possible mass of accommodation and the probable mass of tourists with the contribution in a lower degree of the number of tourist attractions found within a 10 km distance from each tourist attraction. This factor brings to attention the fact that there are not rare the occasions when a tourist attraction captures the potential visitors’ interest more through the infrastructure created around it than with its own significance. In the case of the correlation resulted for this factor, it is natural that a high number of tourists will be associated with a well developed accommodation base, but the mass of tourists can be seen, as stated before, as an expression itself of the tourist attractiveness.
Considering its main components, this second index is naturally named the Added Attractiveness Index (figure 3), in the case of which the first hierarchical positions are held by the most developed areas both from a tourist point of view and from an economic one, being highlighted areas like Piatra Neamt, Vanatori-Neamt, Agapia or Ceahlau. The high values for this index are distributed, besides the communes mentioned above, in those areas that are situated along the main street axes, which introduce the idea of a transit tourism, that is so much less correlated with the quality or intrinsic attractiveness of a destination or tourist attraction.

The factor analysis indicates a third factor that has a high contribution in explaining the model created, with 15% value for the total variance explained. Nonetheless, its components prove that we can talk more about a residual factor, that emphasises a strong correlation between the high values of the altitude and the low ones of all the other variables, especially the one concerning the potential of interaction. The altitude proves to be more a restrictive feature for the development of the tourist activities, fact that decreases its quality of a tourist attractiveness indicator. Accordingly, the third factor will not be included in the final index of attractiveness.

The analysis of the factors resulted allows in the end the creation of a new method of determining what position corresponds to each tourist attraction in a hierarchy created by relating to their tourist attractiveness, each step followed in order to reach this final result being necessary because of the fact that two tourist attractions can be compared and, therefore assigned hierarchical positions, only when all of the attributes and features that characterize them are taken into consideration, together with the connections that exist between them.

By taking into consideration only the first two factors validated by the factor analysis, there resulted the following formula:

\[\text{Ind. attr.} = \text{intr. attr.} \times 0.45024 + \text{ad. attr.} \times 0.21545 \]
which synthesizes all the variables and the relations that appear between them. The difference of importance between the intrinsic attractiveness and the added one in the component of the total attractiveness is emphasised by considering the percentages resulted in the factor analysis for each factor as their coefficients in the formula.

The Tourist Attractiveness Index confirms the primary positions held by Piatra Neamt and Vanatori-Neamt, in a hierarchy of the communes, while some of the tourist attractions from Piatra Neamt, especially those that have a central geographical position in the city, appear as having the highest values of attractiveness in a hierarchy of the tourist attractions. It is noticeable, therefore, that the first positions suffer no changes in comparison with the two hierarchies created on base of the two types of attractiveness, because the attractions with the highest qualitative value are generally the ones that are the best valorised through the infrastructure and also the most visited by the tourists.

The first position in the hierarchy assigned for the communes is obtained by Vanatori-Neamt, which is advantaged both by a more diversified tourist profile and by a higher number of tourist attractions – 40, while Piatra Neamt, which gets the second position, has only 26.

Concerning the diversity, Vanatori-Neamt benefits not only from the presence of some of the most important religious monuments of the county – Neamt Monastery and Sihastria Secului Monastery, to which is added the cultural specific through the museums situated here, but also from the fact that it is characterized by natural tourist resources which are absent inside or in the proximity of the urban area of Piatra Neamt.

The tourist attractions that are not in the proximity of the main road axes or that are even isolated from any forms of living suffer the most from both the lack of the added attractiveness and from the absence of other tourist attractions in their neighbourhood, which determine inferior positions in the hierarchy. This is the case with some of the tourist attractions situated in the extremities of the county, examples being the Sihastria Tarcaului Monastery, located in a wooded area and with a low level of accessibility or attractions situated in deeply ruralized areas, with both
poor accessibility and lack of tourist attraction concentration and variety which might have increased the individual attractiveness as well as the total one for the commune.

The fact that, as it has been suggested before, creating hierarchies of the tourist attractions facilitates the tourist evaluation and respectively the hierarchization of the administrative areas, allows the exemplification of the benefits of the model of hierarchization resulted in this study by comparing its results with the model of evaluation utilized at national level in order to emphasise the tourism potential of the communes of each county.

Figures 5 and 6 illustrate, therefore, the linear regression created for finding out the level of correlation between the two variables compared – the values of the Tourist Attractiveness Index and the score assigned by SPNT, and, respectively, the mapped results of this regression.

What the regression points out through the value of 0.44 for the R2 is a low or almost absent similarity between what SPNT considers as tourism potential and what the Index in this paper indicates as attractive from a tourist point of view. It resulted that less than a half (18) of the communes analysed in this study have a similar level of tourist attractiveness in both the models mentioned, the most of the cases being characterized either by underestimation of the tourism potential or by overestimation.

The map reveals a separation of the west from the east concerning these results. Most of the communes situated in the western part of the county appear as receiving higher scores in the SPNT model, which may indicate as a priority in the evaluation of the tourism potential the features of the relief, too much emphasis being placed on the role the mountains play in the tourist profile of the county. Without denying the importance of the geographical aspects related to the tourist attractions, the Tourist Attractiveness Index insists more on factors of tourist attraction concentration and diversity, as well as on accessibility, factors that may prove closer to the tourists’ vision of attractiveness and implicitly may have an essential role in their decision making for their travels and holidays.

The disimilarity that surprises the most is noticed in the case of Vanatori-Neamt, which from being the first administrative area in the hierarchy created in this paper gets to have an inferior position according to the SPNT evaluation. The explanation could be found either in errors of tourism potential evaluation, made by not knowing the reality from the field, or, as it has been stated before, in the faults of this model concerning the absence of tourist attraction diversity and concentration indices.

CONCLUSIONS

The important role the hierarchies can have in the field of tourism is undeniable, because in the end they can indicate if a considered tourist attraction really deserves its status of element connected to the concept of attractiveness. Therefore, a hierarchy is a decision...
making instrument for two almost opposed sides: the tourists, that will always tend to choose the destinations that they know or they are told are the most important and the potential investors, who can rely on hierarchies either in order to know what destinations can bring them benefits at a certain moment or in order to invest in tourist attractions that may prove of interest after proper improvements and investments.

However, at present the hierarchization of the tourist attractions is a process that does not represent the study object of many specialists in the field, the methods presented in this study and the final model resulted from these methods being a trial of establishing what are the characteristics of the tourist attractions that make them attractive and which are the methods through which these characteristics can turn into criteria of hierarchization.

The distance, as an element that more than indicating the interaction potential, insists on emphasising the importance of tourist attractions density in territory and of tourist profile diversity in a given area, proves to be the element of novelty brought to the process of hierarchization through this study. This fact can be noticed in the comparison with the SPNT model, that appears to place no emphasis on the aspects mentioned before. The disimilarities between the two models of hierarchization analysed do not need to signify a diminishing of the applicability of the Tourist Attractiveness Index resulted in this study, no matter how generalized the utilization of the SPNT model is. In fact, these disimilarities can raise question marks about the validity of the SPNT model and it may suggest potential improvements to it.

REFERENCES

Moreau A. (2001), Méthode d'évaluation du potentiel touristique des monuments historiques en milieu urbain, Université du Québec.
*** Institutul de Memorie Culturală (http://www.cimec.ro, accesat la data de 27.11.2014)
*** Institutul Național de Statistică (http://www.insse.ro, accesat la data de 10.11.2014)
*** Ministerul Dezvoltării Regionale și Administrației Publice (http://www.mdrap.ro, accesat la data de 4.11.2014)

Submitted: November 22, 2014 Revised: January 06, 2015 Accepted and published online March 05, 2015